** Sequen S.A., Lausanne - Printed in The Netherlands

Process communication

ADDUCTS OF A PALLADIUM(II) DERIVATIVE CONTAINING A SONDED a-DIMINO GROUP WITH TRANSITION METALS, A NEW CLASS OF BIMETALLIC COMPLEXES

RECEIVANT M. NICOLINI

Chimica Tecnologia Composti Metallorganici Elementi Transizione, E. V. E. William (Haly) and Istituto di Chimica Generale dell' Università, l'adenta (Haly).

Section of Molecular Sciences, University of Sussex, Brighton BN1 9QM (Great Britain)

Summery.

The characterisation of 1:1 adducts of [PdCl-C(NC, H, OMenMeC+NC, M, OMe) (PPh,);] and MCl₂ (M = Fe, Co, Ni, Cu and Zn) is described

a previous paper we have described the preparation of palladium its complexes containing o-diimino groups and their facile protonation by partitionic acid [1]. We now report preliminary results of a study on the containing properties of these compounds towards metals of the first transition series.

The reactions investigated are shown in Scheme 1. The a dumino some

plex I reacts rapidly with anhydrous MCl₂ in a 10:1 v/v mixture of CH₂ Cl₂/C₂H₄ OH to give the adducts III, which can be recrystallized from the same solvent mixture (yields 70-80%). Satisfactory elemental analyses have been obtained for all products. Molecular weight measurements show that the bimetallic complexes III are monomeric in 1,2-dichloroethane solution. From the magnetic moment values (see Table 1) it appears that products IIIa—IIId are paramagnetic high-spin complexes.

TABLE I IR DATA AND MAGNETIC MOMENTS OF COMPOUNDS I: III

Compound	ε(C∈N) (cm →	#(Pd ~C1) {em	<i>t</i> (M Cl) (cm ⁻¹)	Heff. (BM)
1	1616m 1550m	265m;		
1[la	1588mw	302m	358ms 327m	5.18
Шр	1581mw	300m	350ms 333m	4.36
111c	1580mw	295m	340ms 330(sh)	3 24
lild	1579mw	308(sh) or 297ms	329ms 308(sh) or 297ms	2 50
He	1580(sh)	302m	337ms 325(sh)	

Only one $\nu(C=N)$ band of low intensity is observed upon coordination of the α -diimino group. This is probably due to a delocalised π -electron system being formed on the five-membered ring by interaction of the C=N double bonds with the metal d orbital of appropriate symmetry [2,3]. This view is also supported by the down-field shift of the methyl signal, $\delta(C=Me)$, which occurs at 2.27 ppm in the ¹H NMR spectrum of the zinc derivative IIIe, relative to the corresponding signals of the ligand I (1.29 ppm) and the protonated ligand II (1.51 ppm) [1]. As can be seen, the $\nu(Pd=CI)$ band of the coordinated ligand is shifted by ca. 30—40 cm⁻¹ to higher frequencies, a similar effect being observed also in the protonation product II [1].

Electronic spectra in the visible and near-infrared region indicate a tetrahedral configuration around the metal M both in the solid and in dichloromethane solution. For example, the spectrum of the cobalt adduct IIIb shows d-d bands in the regions 590–700 nm and 1000–1700 nm, which are typical of tetrahedral or pseudotetrahedral [CoCl₂ L₂] complexes [4].

For the copper complex IIId, however, a planar configuration cannot be ruled out, but a distorted tetrahedral structure is probably imposed by the steric requirements of the ligand [5].

We gratefully acknowledge partial support of this work by N.A.T.O. (Grant N. 735).

References

- B. Grociani, M. Nicolinf and R.L. Richards, J. Organometal. Chem., 104 (1976) 259.
 D.H. Bush and J.C. Bailar Jr., J. Amer. Chem. Soc., 78 (1956) 1137.
 K. Nakamoto, Advances in the Chemistry of the Coordination Compounds, Macmillan, New York, 1961.
- 4 E.R. Menzel, W.R. Vincent, D.K. Johnson, G.L. Seebach and J.R. Wasson, Inorg. Chem., 13 (1974) 2465.
- 5 A.L. Lott, II and P.G. Rasmussen, J. Inorg. Nucl. Chem., 12 (1970) 101.